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ANALYSIS OF THE SOUND FIELD OF A LARGE SPAN OSCILLATING 

BODY OF REVOLUTION 

D. N. Gorelov UDC 5 34.2 31 

The theoretical investigation of the spatial sound field produced by an oscillating body 
of nonzero thickness is a complex problem which has been solved in practice only for a 
sphere [I]. 

In this paper an approximate method is proposed for the analysis of the spatial sound 
field produced by a slender body of revolution with an arbitrary law of its surface oscilla- 
tion. The solution obtained can be applied to the analysis of the near sound field and the 
apparent masses of bodies of revolution oscillating in a compressible fluid. 

Let us consider the problem of oscillations of a body of revolution in an ideal com- 
pressible fluid, which is at rest infinitely far from the body. Let us introduce the Oxyz 
Cartesian coordinate system in which the Ox axis is directed along the axis of body symmetry 
and the origin is at its midsection (see Fig. i). 

Let S be the surface of the undeformed body, r = y~ + z 2, r = R(x) is the equation of 
the generator of the body of revolution, Ro = R(O), I is half the length of the body, X = 
I/P~ is the span of the body, m is the angular frequency of body oscillation, t is the time, 
8 = arctan(z/y), w(x, 8, t) is the displacement of the body surface along the normal to S, a 
is the speed of sound in the fluid at rest, and ~(x, y, z, t) is the velocity potential. 

Let us also assume that 

~>>t ,  d R / d x N R o / l ;  (1) 

lwl<<R0, Ow/Ox~A/l  (A = maxlwt). (2) 

The assumpt ions  (1) and (2) pe rmi t  the  i n t r o d u c t i o n  o f  two smal l  pa ramete r s  in to  the 
considerations: 

el = Ro/l, ~ = A/Ro. 

Let us go over to dimensionless coordinates x, y, z and functions r, R referred to Ro by 
retaining their previous notation. Assuming that the body oscillates according to a given 
harmonic law for an infinitely long time, we represent the function w and the velocity poten- 
tial ~ in the form 

w(x, O, t) = A Re{W(x, O)ei~t}; (3) 

~(x, y, z, t ) =  aR o Re{~(x, y, z)ei~t}. 
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where H~ t 2) (kr) 
of a parameter. 
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Fig. 1 
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The assumption (2) permits solving the problem of determining the velocity potential 
outside the oscillating body in an acoustic approximation. In this case the function ~ satis- 
fies the llelmholtz equation 

~)~x + ~)y~ + (Dz, + k*-d) = 0 (k = ~Ro/a) (4) 

and the following boundary conditions 

Vq).'~ = ik~2W(x, 0) when (x, y, z) ~ ,9; ( 5 )  
atl) 

where ~ is the normal vector to S and ro= Cxa + y2 r za. 

The expression (5) defines the condition for nonpenetration of the fluid through the sur- 
face of the oscillating body, and (6) is the radiation principle. In the general case the 
function W(x, 0) has the form 

W (x, 0) = W o (x) + ~ [WI~ (x) cos n0 + W2,, (x) siu n0l. (7) 
n = |  

Let us first consider axisymmetric body oscillations. In this case, 

W(x, ~) = W0(x) 

and the solution of (4) can be constructed by using a continuous distribution of sources of 
some intensity Qo(x) in the segment Ixl <_ %. The function #o satisfying (4) and the radia- 
tion principle (6) then has the form 

+~ 

(~o (x, y, ~) = ~ -  Oo (~) dL (8) 

where r l = V(x- ~)~ +--~. 

To determine the desired function Qo(~), we have the following integral equation obtained 
from condition (5) for nonpenetration of the fluid through the body surface: 

i [ ~,, ,0~0 0~o] 
- -  n (X)  ~ x  3c ~-- ikszW o (x) when r = R (x). (9 )  

The exact solution of this equation is fraught with serious difficulties. Hence, it is ex- 
pedient to seek the approximate solution taking account of assumptions (i) and (2). 

Let us constrct the approximate solution of (9) by following the idea of the Frankl'-- 
Karpovich method developed to solve problems on the flow around slender bodies of revolution 
by a stationary subsonic gas flow [2]. 

As the first step, let us find the solution of the corresponding problem of plane gas 
flow around a circular cylinder being formed at thesectionx=const (Ixl -< %). The amplitude 
function of the velocity potential for such a flow 5o(X, r) can be determined by the formula 

~)o (x, r) = ~ Qo (x) d~ ~ ~ .  (x) H(o 2) (kr), (10) 
- - o o  

is the Hankel function of the second kind, and the x coordinate plays the part 
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In conformity with (9), the condition for nonpenetration through a cylinder of the con- 

stant radius r = R(x) has the form 

O~o/Or = ike,,Wo(x ) whenr = R(x). 

It hence follows r.hat 

Q0 (x) = 4~.,w0 (x)/H~ "-> (k~). ( l : )  

L e t  us n o t e  t h a t  t h e  b o u n d e d n e s s  o f  t h e  f i r s t  d e r i v a t i v e s  R ' ( x )  and W (x) p e r m i t s  r e p r e -  
s e n t i n g  the function Qo(~) on the segment ]~I <- ~ in the form 

Qo(~) -- Qo(x) + F(~), (12) 

where 
[ F ( ~ ) I < [ ~ - - : x I M ,  M =  sup [Q~(~)[. 

I t  f o l l o w s  f rom (11) and  c o n d i t i o n s  ( 1 ) ,  (2)  t h a t  

Qo (x) ~ e2, Q0 (x) ~ e:e~, M ~ ele~. (13) 

Now let us show that the function Qo = Qo is a solution of (9) in a first approximation. 

In place of Qo let us substitute the function Qo defined by (II) into (8). Then, using 
(12), the ftmction ~o can be written in the form 

~ e - i h r i  t e - ihr~ 
Q~ e--~hr'd~ + - - d ~  + ~ F ( ~ ) - r l  d~. (14) (I) o (x, y, z) = ~o (x, r) ~- - - ~  L d r: d rl 

L e t  us e v a l u a t e  t h e  d e r i v a t i v e s  r  r  f o r  p o i n t s  o f  t h e  s u r f a c e  S and l e t  us e s t i m a t e  
t h e i r  o r d e r .  Us ing  ( 1 4 ) ,  ( 1 0 ) ,  and ( 1 2 ) ,  we h a v e  

,.. ]} S: .§ o (~ ~- -~i Or, \ r: ] -~ F (~) r: Or: \ r t / d~, (15) 

where rl = ~:x-- ~')" + R "~'. 

Let us estimate the orders of the integrals in this expression by taking into account 
that for all Ixl < X the relationships (13) and R/(%- Ix I) ~ eL are valid. 

For the first integral in the square brackets the following estimate holds: 

~ or~ C - ~  ] d~ ~< ~ + dg = 
, r t 

= -R- [~-  - -  arctg + 

= o + 

The s e c o n d  i n t e g r a l  i n  t h e  s q u a r e  b r a c k e t s  h a s  an a n a l o g o u s  e s t i m a t e .  Now i f  i t  i s  t a k e n  i n t o  
account that for lxl  -< % the quantity H! =) (kR) % R-', then r_he second member in the braces is 
on the order of e~. As concerns the last member in (15), then 

e--ihr~ 
i ~ d~ <~BM [ ~ - - x l  " k -1- ~ d ~ =  

= R M  In [(~, + x) ~ -~ R ~] [(~, - -  x) ~ + R ~] - -  2k In R ,-6 R 

1 1 } = 0 (e~e~ In e j .  
V (~ + x)~ q- R ~ ]/ (~, -- z)~ + R ~ 

There fore, 

~k - (x) H~ 2) (kR) [! + 0 (801 + 0 (ele~ In 80 .  @o r Ir=R(x) = ~ -  Qo (16)  

lu is convenient to use (8) to calculate the derivative ~ox by assuming Qo = Qo. Then 
taking account of (12) 
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~o~ l,=R(x, -4o (x) +~'~ e-~h,, +~ �9 +~ . § + 
J rl \ r~ / C-;-f-~ / 

Estimating the integrals in this expression, we obtain 

~0xlr=R(z) -- 0(8182 In 81) q- 0(elez/H). (17) 

Substituting (16) and (17) into condition (9) for nonpenetration of the fluid through 
the body surface, we obtain 

VO0" v It---rex) = ike2Wo(x) + 0(818~ in 81). (18) 

T h e r e f o r e ,  the  f u n c t i o n  Qo i s  an a p p r o x i m a t e  s o l u t i o n  o f  (4) wh ich  d i f f e r s  f rom the  ex -  
a c t  s o l u t i o n  by the  o r d e r  o f  magn i tude  ez i n  ez .  Because  o f  t h e  c o r r e c t n e s s  o f  t he  b o u n d a r y -  
v a l u e  p r o b l e m  ( 4 ) - ( 6 ) ,  i t  can  be a s s e r t e d  t h a t  f o r m u l a  (8) f o r  Qo = Qo y i e l d s  an a p p r o x i m a t e  
s o l u t i o n  i n  the  whole  f low domain which  d i f f e r s  s l i g h t l y  f rom the  e x a c t  s o l u t i o n .  

Now l e t  t he  body o f  r e v o l u t i o n  o s c i l l a t e  a c c o r d i n g  to  the  a r b i t r a r y  law (7) under  the  
a s s u m p t i o n s  (1) and ( 2 ) .  I n  t h i s  c a s e  t he  s o l u t i o n  o f  the  b o u n d a r y - v a l u e p r o b l e m  ( 4 ) - ( 5 )  
can be c o n s t r u c t e d  by a l i n e a r  c o m b i n a t i o n  o f  m u l t i d i p o l e s  o f  d e f i n i t e  t y p e .  The c a s e s  o f  
even  and odd dependences  o f  t h e  f u n c t i o n  W(x, O) on t h e  v a r i a b l e  O s h o u l d  hence  be d i s t i n -  
g u i s h e d .  

L e t  us f i r s t  c o n s t r u c t  the  s o l u t i o n  f o r  even  f u n c t i o n s  W(x, 8 ) .  Because  o f  l i n e a r i t y  o f  
t h e  p r o b l e m  i t  i s  s u f f i c i e n t  t o  f i n d  t h e  s o l u t i o n  f o r  the  c a s e  

W ( x ,  0) : WI,~(z) cos nO. (19) 

L e t  us n o t e  t h a t  t he  f u n c t i o n  cos n0 can be r e p r e s e n t e d  by an e x p a n s i o n  i n  powers  o f  cos  
0 i n  the  form [3] 

j n j--I n--2j 
= , cos O) , cosnO 2~--i cos~ O --' ( - - t )  ~ f  C ~ - j - i  (2 (20) 

j=l 

where Cn TM a r e  the  b i n o m i a l  c o e f f i c i e n t s .  

I n  c o n f o r m i t y  w i t h  ( 2 0 ) ,  t h e  s o l u t i o n  o f  t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 4 ) - ( 6 ) ,  (19) can  
be s o u g h t  by u s i n g  a l i n e a r  c o m b i n a t i o n  o f  m u l t i d i p o l e s  o f  t h e  t y p e  

C O ~ ( ~ ) 0 y ~  ~1 J . . . .  

d i s t r i b u t e : d  c o n t i n u o u s l y  a l o n g  t h e  Ox a x i s  f o r  [~[ s t .  D e n o t i n g  t h i s  s o l u t i o n  in  te rms  o f  
r  y ,  z ) ,  we have  

+~ 

~I ---- qbim, qDtrn---- ~ ~ ~" (21) 

The functions Qxm are determined from the nonpenetration condition (5), which in the case 
under consideration has the form 

OO~ _ i k e 2 W i  n (x) cos nO for (x, y, z) ~ S. (22) av 

S u b s t i t u t i n g  (21) i n t o  c o n d i t i o n  (22) and t a k i n g  i n t o  a c c o u n t  t h a t  y = r cos e,  and cos 
nO i s  e x p r e s s e d  i n  terms o f  powers  o f  cos  O by u s i n g  ( 2 0 ) ,  we a r r i v e  a t  a s y s t e m  o f  i n t e g r a l  
e q u a t i o n s  i n  the  f u n c t i o n s  Q,m (m = 0,  . . . ,  n ) .  We s o l v e  t he  s y s t e m  o b t a i n e d  a p p r o x i m a t e l y  
by u s i n g  t h e  method p r o p o s e d  a b o v e .  F o l l o w i n g  t h i s  method ,  we f i n d  the  s o l u t i o n  o f  t he  c o r -  
r e s p o n d i n g  b o u n d a r y - v a l u e  p r o b l e m  o f  p l a n e - p a r a l l e l  f l u i d  f low a round  an i n f i n i t e  c y l i n d e r  
w i t h  r a d i u s  r = R ( x ) ,  where  x p l a y s  the  p a r t  o f  a p a r a m e t e r .  The a m p l i t u d e  f u n c t i o n  o f  the  
v e l o c i t y  p o t e n t i a l  f o r  such  a f low Cxm, p r o d u c e d  by  a m u l t i d i p o l e  w i t h  i n t e n s i t y  Q~m(X), i s  
d e t e r m i n e d  by the  f o r m u l a  

~ (x, r, O) = - ~ O,m (x / / ~  (~r), 

where r = /y~ + z2. 

Let us require that 
OcD1mlOv = ~p1.~l~r for r = R(x). 

Then by analogy with the deduction of the relationship (18), it can be shown that 
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Qlm = Qlm + 0(sis2 In ex) , (23) 
while the function Qxm is a quantity on the order of s2. 

Now substituting (21), in which #:m = ~im, into the boundary condition (22), we obtain 
a linear system of algebraic equations to determine the quantities Q1m (m = 0, ..., n). Fur- 
thermore, replacing the functions Q~m in (21) by Qxm, we obtain the desired approximate solu- 
tion of the problem (4)-(6) for the case of body oscillations according to the law (19). 

The solution of the problem (4)-(6) is constructed by an analogous means for body os- 
cillations according to the law 

W ( x ,  0) = W~n(x) sin n0. (24) 

Taking i n t o  accoun t  t h a t  [3] 
sin nO = sin 0 ~ (-- i) j+~ C~_j (2 cos 0) n-2J+l, 

the solution ~a of this problem can be sought in the form 

' +i o Qri)2= (I)2m, q~2m=~'~ Q 2 m ( ~ ) - ~ z -  d~. (25) 
m=l (cOy r n - i  k '-"~l / )  

The approximate  s o l u t i o n  o f  the  problem (4 ) - (5 )  i s  c o n s t r u c t e d  by the  same means. In  
p a r t i c u l a r ,  the  ampl i tude  f u n c t i o n  ~am of  the  co r r e spond ing  p l a n e - p a r a l l e l  flow around the  
cylinder r = R(x) is determined by the formula 

i a{am-~ (o } - -  ~y--f~-=-~ (Hs  (kr))  ~ 2 ~  (z, r, 0) = - ~- Q2~ (x) o~ 

and the functions Qam by the solution of a system of algebraic equations obtained from the 
nonpenetration condition. 

It can again be shown that Q2m is an approximate solution for Q2m with an estimate of 
the type (23). 

Within the framework of the acoustic approximation, the hydrodynamic pressure p in a 
fluid produced by the oscillating body is determined by the Cauchy--Lagrange integral 

p - -  p ~ -= - -  p a ( p / o t ,  (26) 

where p~ is the pressure in the fluid at rest and p is the fluid density. 

Let us introduce the dimensionless pressure function Cp(X, y, z, t) by assuming 

P - -  P ~  = ( t / 2 ) p a 2 C p .  (27) 

In  confo rmi ty  w i t h  e x p r e s s i o n s  (26) ,  (27) ,  and (3) 

Cp = --2k Re {i~be~t}. (28) 

Let us clarify the asymptotic of the solution in some direction given by the unit vec- 
tor ~ = (Ix, ly, Iz)i. Let us use the notation 

r = V y~ + ~'-, r0 = V ~' + y~ + ~, r~ = V (~ - ~)~ + y~ + z ~ 

Assuming l~l -< X, ro >> X, we have 

r ~ = r  o -  xAq-0(r~-l), ~ = t  ~_0(rff-2). 
~'0 F 1 F 0 

It hence follows that 

o-~h..- e-ih.o [elh,= ~ + 0 ( r r q ] .  (29) 
rl ro 

Substituting: (29) into (8), we obtain 

e - - i h r o  
�9 0 (x, y, z) = ~ S Q0 (~) d ~ d ~  + 0 (rF2) �9 (30) 

Formulas (28) and (30) determine the asymptotic of the solution in the direction of the vec- 
tor ~ for the case of axisymmetric body oscillations. 

To obtain asymptotic formulas in the case of body oscillations according to the laws 
(19) and (24), it should be kept in mind that 
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0 ~ (e-ibm01 y '~e-~k~~ + O ( r o 2 ) ,  

& @'~-' , ~ /  =(--ik)m-~-o{V) ro "+O(rK~-)' 

z/r o= | / l - - l ~ s i n O ,  y,'r o= | ' t - l .~cosO.  

Taking these expressions into account, (21) and (25) for the amplitude functions r 
be represented for ro >> ~ in the form 

�9 n q-~. 
e -2hr~ ' ~  -'~ "i m ' itUxt~.. , r~ [_--2"L 

(I) , (x,y,~-)-- /-7:5: :-- . . -- . ,  ( - - i k | / l - - l~ .cosO]  I Qlm(?) e a~q-Ukro ],  
4 . q !  0 m-~= 0 ~ " , ,  

r can 

(31) 

e-ihro 
(~2 (X; y ,  Z) = 4.~r ~ - - s i n O  /_.'~ /1,,. - -  i/,' l / -  ~ ) m c o s m - t  0 

T r t = !  
J Q,m ($) e "'.~'d; @ 0 kro -). (32) 

It follows from (31) and (32) that in the case of low-frequency oscillations of a body, when 
the parameter is k = mRo/a << i, the main contribution to the sound field far from the oscil- 
lating body is due to its axisymmetric oscillations. 
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SHOCK LOADING OF AN INFINITE PLATE CONTIGUOUS TO A FLUID 

V. P. Yastrebov UDC 532.5:539.37 

Questions of the effect of shock loadings on infinite plates in contact with a fluid 
have been examined in a number of papers [1-9]. The axisymmetric deformation of plates was 
studied in [1-6], while [i, 7-9] were devoted to the plane problem. The investigations were 
executed in different formulations. Different kinds of plate loadings (the effect of acous- 
tic pressure waves, concentrated forces or distributed loads; assignment of the motion veloc- 
ity) were considered. The plate deformation was described by different equations (the mem- 
brane deflection equation, the Bernoulli--Euler bending equation, or a Timoshenko-cype equa- 
tion). The main method of solving these problems is the method of integral transforms. Defi- 
nite difficulties occur during the solution in going from the transforms to the originals. 
Still greater difficulties are encountered in analyzing the solution and obtaining specific 
numerical results in the originals written in the form of complex single or double integrals. 
The solution in a number of papers [3, 5, 8] is hence constrained to the writing of formulas 
in quadratures, while the problem is solved in other investigations [i, 2, 4, 6, 9] by asymp- 
totic methods which are valid in a definite range of time variation. There are also separate 
results obtained by using the numerical inversion of the Laplace transform in [6] which is 
devoted to the effect of a spherical pressure wave. 

In this paper, the solution of the plane problem of bending an infinite plate in con- 
tact with a compressible fluid occupying a half-space along one of the sides of the plate is 
sought by using integral transforms. 

w The X, Z coordinate plane is in the plane of the plate, and the'Y axis is directed 
into the fluid. A transverse load distributed uniformly along the Z axis is applied instan- 
taneously to the plate along nhls whole axis. It is sufficient to consider the motion in one 
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